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Abstract. The competition between different and unusual effects in quasi-one-dimensional
conductors makes the direct interpretation of experimental measurements for these materials
both difficult and interesting. We consider evidence for the existence of large charge-density-
wave fluctuations in the conducting phase of the Peierls insulator(TaSe4)2I, by comparing the
predictions of a simple Lee, Rice and Anderson theory for such a system with recent angle-
resolved photoemission spectra. The agreement obtained suggests that many of the unusual
features of these spectra may be explained in this way. This view of the system is contrasted
with the behaviour expected of a Luttinger liquid.

1. Introduction

Restriction of a many-body system to low dimension brings with it simplifications but also a
cost—the need to pay much closer attention to the effects of both thermodynamic fluctuations
and interparticle correlations. One-dimensional models have proved an extremely rich field
for the exploration of subtle effects of electron–electron interactions. They have been found
to have quite complex ground states brought about by the same reduced phase space which
makes some of their properties soluble, and which causes finite temperature to play so
dramatic a role.

A colourful variety of quasi-one-dimensional and two-dimensional materials are now
accessible to experiment, but this has not produced scientific consensus in all areas. Nine
years of intensive research on high-temperature superconductors, the best known examples
of quasi-two-dimensional systems, have failed to yield agreement on even the symmetry of
their respective ground states.

The study of quasi-one-dimensional conductors has been less intense, but they are
interesting for similar reasons. All attempts to model these materials must make reference
to the fact that they are not truly one-dimensional, but merely very, very anisotropic. The
set of materials to which(TaSe4)2I belongs have a common structure of an assembly of
weakly coupled conducting chains. Their behaviour has generally been understood in terms
of those properties of one- (or three-) dimensional systems which are held to be relevant
to them. This interplay of dimensionality is not trivial; weak interchain coupling will act
to stabilize states born of instabilities in the underlying one-dimensional structure, which
would otherwise be destroyed at finite temperature by large thermodynamic fluctuations. In
the limit of strong coupling both the instability and the fluctuations may be irrelevant.
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Many and diverse experimental techniques have been brought to bear on quasi-one-
dimensional conductors in pursuit of insight into their properties and the low-dimensional
physics which these betray. The transition metal tetrachalcogenide(TaSe4)2I alone, in the
thirteen years since its first synthesis [1], has been probed with neutron scattering [2], x-
rays [3], low-energy electrons [4], ultraviolet photons [5], and subjected to measurements
of optical and electrical conductivity [6–8] and magnetic susceptibility [9]. This material
is interesting, since on cooling it displays a second-order phase transition at the (relatively
high) temperature of 263 K, from a highly conductive but extremely anisotropic ‘metallic’
phase into a semiconducting charge-density-wave ground state. While angle-integrated
photoemission [10, 11] and inverse photoemission [12] experiments have been performed
on such materials for some time, only very recently have angle-resolved photoemission
(ARPES) data become available. These offer the most direct means yet of understanding
the changes which take place in the system’s electronic properties.

The instability of one-dimensional metals against an insulating ground state was
described by Peierls [13] in 1953 and the mean-field theory [14] can be constructed in close
analogy to the BCS theory of superconductivity. It is also well known that the fluctuations
forced by the restricted phase space of a truly one-dimensional system prevent it from
undergoing a phase transition at any finite temperature. The real systems, then, must exhibit
an interplay of dimensional and thermodynamic effects, which manifest themselves in the
strong and unusual temperature dependence of the ‘metallic’ properties observed above the
transition temperature. Early measurements of the magnetic susceptibility of(TaSe4)2I [9]
suggested that fluctuations of the charge-density-wave (CDW) order parameter were present
for all temperatures above 263 K, up to the limit of the compound’s chemical stability (at
about 430 K). In order to understand the phase transition which takes place in this and other
similar materials, it is necessary first to understand the role of fluctuations in the properties
of a one-dimensional conductor.

It has also been known for some time that the Landau Fermi-liquid state is unstable
against interparticle interaction in one dimension; the paradigm of the Luttinger liquid has
evolved to describe the properties of a number of abstract one-dimensional models (for
an overview see [15]). Luttinger liquids have unusual correlation functions displaying
separation of spin and charge degrees of freedom, and possess no stable single-particle
excitations at the Fermi energyεF . This implies that the customary discontinuity in zero-
temperature occupation numbern(k) at the Fermi wavevectorkF found in all Fermi liquids
is absent, and that the electronic density of states will vanish nearεF , with a power-law
behaviour determined by the strength of interparticle interactions. The decoupling of spin
and charge degrees of freedom manifests itself in new structure in the spectral function of
the system.

A topic much discussed in recent years is whether some aspects of this well-established
one-dimensional behaviour can survive in higher dimensionalities. For example, it has
been proposed that the normal-state properties of high-temperature superconductors can
be understood on the basis of this hypothesis [16], while others believe that any coupling
between chains must destroy the Luttinger liquid. One approach to this problem is empirical:
if evidence of Luttinger-liquid behaviour could be found for a real weakly-coupled-chain
system this would constitute proof of the possibility of such behaviour in higher dimensions.
In this spirit, we ask whether(TaSe2)4I is, experimentally, a Luttinger liquid, as has
sometimes been claimed. As a first step, we compare ARPES data with a more conventional
interpretation, that of CDW fluctuations. In a later paper, we shall attempt a more systematic
comparison of strongly correlated electron and CDW theories for the transport properties
and the ARPES and core-level lineshapes of(TaSe2)4I.
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In sections 2 to 4 of this paper we shall present the model used, its overall properties,
and the comparison of theory and experiment for ARPES lineshapes in(TaSe4)2I. The
discussion is based on the premise that fluctuation effects born of the electron–phonon
interaction dominate over those of correlation (interparticle interaction) for this system. It
is found that such a treatment works well for(TaSe2)4I. A critical comparison of this picture
with other candidate descriptions is given in the conclusions of section 5.

2. The model

The problem of describing the combined effect of correlation and electron–phonon
interaction in one dimension on an equal footing is an axiomatically hard one, since
correlation in one dimension destroys the Fermi-liquid picture on which the (perturbative)
treatment of electron–phonon interaction is based, whilst the physics of the Peierls transition
is dictated by 2kf ‘backscattering’ events, which cannot be treated within the usual scheme
for electronic correlations. For a given real material, in a given temperature range, however,
it may not be necessary to solve the general problem in order to understand the results of
experiment. As there is no clear framework for relating the microscopic properties of
materials to the parameters ofanyof the phenomenological models referred to in this paper,
the best that can be done is to develop a model based on what is believed to be the relevant
subset of physics for each material, and to test it against a variety of experiments.

In order to provide a framework for our calculation we briefly review here some basic
perturbative (mean-field) results for electrons in a Peierls CDW system, and present a
succinct derivation of a Green’s function for electrons suffering fluctuations of CDW order,
in the spirit of the treatment of Lee, Rice and Anderson (hereafter referred to as LRA, [17]).

The starting point for any non-correlated theory of electron–phonon interaction is the
Fröhlich Hamiltonian

H =
∑

k

ε(k)c
†
kck +

∑
q

ω(q)b†
qbq + 1√

L

∑
q,k

g(q)c
†
k+qckuq

uq = 1√
2ω(q)

(b†
q + b−q)

(1)

where c
†
k and b

†
q are (respectively) creation operators for electrons and phonons with

dispersionε(k) and ω(q), uq is the Fourier transform of the lattice displacement, and
g(q) the electron–ion coupling.L is the number of sites. For simplicity we will not credit
the electrons with spin, and will describe the band by a free-particle dispersion relation,
linearized aboutkf .

Consideration of the linear response of this system [14] reveals that the phonon
frequencies undergo drastic adjustment if the band is near half-filling; the 2kf -phonon is
softened and its frequency vanishes at a well defined mean-field transition temperatureTc

given by

kBTc = 2γ

π
e−1/λvf kf (2)

with

λ = N0
|g(2kF )|2
h̄2ω2

2kF

(3)

whereN0 is the density of states at the Fermi energy, andγ ≈ 0.5772 is Euler’s constant.
The overall picture of the important quantities in the mean-field theory is presented in
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Figure 1. Phases of a Peierls insulator—from a Kohn metal with phonon frequency�2kf to a
band insulator with gap1(T ).

figure 1, where the gap1(T ) and the phonon frequencyω2kF
(T ) are plotted on a phase

diagram.
The result in equation (2) (the giant Kohn effect) may also be found in low-order

perturbation theory, in which case a length scaleξ0 emerges naturally from the calculation:

ξ0 =
√

7ζ(3)vF

4πkBTc

(4)

whereζ(3) ≈ 1.202 is the Riemann zeta function, andvF the Fermi velocity. Condensation
of the softened 2kF -phonon leads to a static lattice distortion〈u2kF

〉, and the opening of a
gap1 in the electronic spectrum. The interaction term in the Fröhlich Hamiltonian (1) may
then be approximated by a BCS-like mean-field form

H(MF)
ep =

∑
k

[1∗c†
k−2kF

ck + 1c
†
−k+2kF

c−k]

1 = 1√
L

g(2kF
)〈u2kF

〉.
(5)

Self-consistent solutions for1 and 〈u2kF
〉 as a function of temperature may now be found

for the Peierls insulator in the same way as for a BCS superconductor. Both systems are
dominated by the same square-root singularity in the electronic density of states at the edges
of the gap.

This picture of a metal–insulator transition in a purely one-dimensional metal is clearly
not adequate as we expect fluctuations of the order parameter, when properly accounted
for, to destroy the mean-field solution atany finite temperature. Real systems, however,
are not truly one-dimensional.(TaSe4)2I comprises parallel chains of tantalum atoms [20],
surrounded by approximately perpendicular rectangles of Se (figure 2). The iodine resides
between chains. Overlapping dz orbitals on the tantalum chains form a band along which
conduction occurs. Whilst electronic transport across the chains is believed to be diffusive
at the temperatures of interest here and thus does not give rise to coherent dispersion in the
perpendicular directions, interchain interactions can act to stabilize the mean-field solution
at some three-dimensional ordering temperatureT 3D

c considerably less than the mean-field
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Figure 2. The schematic structure of the Ta chain in
(TaSe4)2I.

Figure 3. A Feynman diagram for the electron self-
energy in the LRA theory, with the phonon self-energy
indicated by the lozenge.

temperatureTc. This then corresponds to the transition observed in real systems. The LRA
model of a one-dimensional metal does not explicitly include interchain effects, but their
relevance and the three-dimensional ordering temperature emerge very naturally from their
analysis. It is found thatT 3D

c ≈ Tc/4.
The physical content of Lee, Rice and Anderson’s extension of the mean-field picture

is the realization that the 2kf -fluctuations of the softened lattice are slow on the time-scale
of electron dynamics and that they may therefore be approximated by a static disorder
potential, the determination of which is then a separate (classical) problem.

We start, then, from a natural generalization of the BCS approximation to the electron–
phonon interaction

H̄ep =
∑

Q,k′>0

[9∗
−Qc

†
k′−Qck′ + 9Qc

†
−k′+Qc−k′ ] (6)

where

9Q = 1√
L

g(Q)uQ (7)

are the components of the disorder potential and may be likened to an order parameter
for fluctuations of some portion of the lattice. LRA then prescribe an equation-of-motion
treatment of this Hamiltonian, which after certain approximations generates the following
relation for the electronic Green’s function:

G(k, k; iωn)
−1 = ε(k) − iωn −

∑
Q

9Q9∗
−Q

1

ε(k − Q) − iωn

. (8)
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The same relation may be written down immediately by using the analogy with static
disorder simply to calculate the second-order self-energy correction for electrons scattered
by the potential9Q [18]. The Feynman diagram used is shown in figure 3. The lozenge
in the diagram is the phonon self-energy, or the charge–charge correlation function at 2kf .
The deformed lattice approximation treats the ionic configuration as rigid (incapable of
recoil), with the positions given by a thermal average. The absence of a frequency sum in
the electron self-energy expresses the fact that the lattice and CDW fluctuations have been
decoupled.

We note in passing that it would in principle be possible to substitute a Luttinger-
liquid Green’s function in the expression for the self-energy, and so to treat the effects
of lattice distortion on a correlated system to a similar level of approximation. To obtain
and parametrize spectral functions from such a calculation would not, however, be trivial.
Similarly, refinements may be made to allow for lattice recoil. We shall not present these
here, but will limit our discussion to the Green’s function previously found by LRA.

Evaluation of this expression then requires knowledge of the correlation function for
the lattice fluctuations at a given temperature. A means of finding this was supplied
by Scalapino, Sears and Ferrell [19]. They perform a functional minimization of a
generalized Ginzburg–Landau free energy to obtain correlation functions for a fluctuating
order parameter in a one-dimensional system, and obtain the following form:

〈9(x)9(x ′)〉 = 〈92(T )〉 exp[−|x − x ′|ξ−1(T )] cos[2kF (x − x ′)]. (9)

LRA substitute a free energy with parameters taken from the mean-field (linear response)
perturbative treatment of the 1D Fröhlich Hamiltonian:

F [9Q] = a(T )|9Q|2 + b(T )|9Q|4 + c(T )(Q − 2kF )2|9Q|2 (10)

with

a(T ) = D0
T − Tc

T
b(T ) = D0

[
b0 + (b0 − b1)

T

Tc

]
and

c(T ) = D0ξ
2
0 (T )

whereD0 is the (constant) density of states for the band, which is taken to have width 2εF .
We fix b0 andb1 to give the correct zero-temperature value of the gap10 in the electronic
spectrum:b0 = 1/212

0 and

b1 = b0
7ζ(3)

16π

(1.76)2

0.5
.

The problem of determining〈92
Q(T )〉 andξ(T ) then reduces to that of finding the low-

lying energy levels of a particle moving in an anharmonic potential well, the shape of which
is determined by the coefficients of the free energy:

H = −1

4

k2
BT 2

c

D0

∂29

∂x2
+ a(T )|9|2 + b(T )|9|4. (11)

This may solved numerically, or approximately using perturbation theory and asymptotic
analysis. It is found that the coherence lengthξ increases steadily from its mean-field value
at Tc with reducing temperature, but increases very rapidly at a temperature approximately
one quarter ofTc. This implies that long-range order exists for temperatures below1

4Tc,
and interchain coupling stabilizes the mean-field solution. We will identify this temperature
with the transition temperatureT 3D

c of a three-dimensional system and not attempt to
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treat interchain effects explicitly. The mean square value of the correlations increases
approximately linearly with decreasing temperature, and takes on the role of a mean-field
gap below the three-dimensional ordering temperature.

The following parametrization is accurate in the temperature range of experimental
interest in the next section:

ξ−1(T ) = ξ−1
0 (T )

(
4T

3Tc

− 1

3

)
(12)

〈92(T )〉 = a′

b

(
1 − T

Tc

)
− 1

2
kB = Tc

a′
1√

1 − T/Tc

(13)

wherea′ = a(T )/T .
We are now in a position to assemble the Green’s function for the system, with the

(static) lattice fluctuations parametrized by the ‘gap’ (squared) energy scale〈92(T )〉 and
the ‘lifetime’ energy scaleξ−1(T ):

GR(k, k; ω)−1 = ω − ε(k) −
∫

dQ
S(Q)〈92〉

ω − ε(k+
−Q) + iδ

(14)

whereS(Q) is a Lorentzian of widthξ−1 centred onQ = 2kF , the sign in the denominator is
chosen to giveε(k+

−Q) ∼ ε(k), and〈92〉 is found from the results of SSF [19]. Evaluating
the integral overQ, and dropping the second momentum index, we arrive at a result for
the Green’s function:

GR(k, ω) = ω + ε(k) + ivF ξ−1

ω2 − ε(k)2 − 〈ψ2〉 + ivF ξ−1(ω − ε(k))
. (15)

This will form the basis for most of the subsequent analysis.

3. Basic properties of the model

Insight into the properties of the model outlined may be obtained by consideration of the
imaginary part of the Green’s function (15) derived above:

A(k, ω) = vF ξ−1〈ψ2〉
[ω2 − ε(k)2 − 〈92〉]2 + v2

F ξ−2[ω − ε(k)]2
(16)

where the parameters〈92〉 andξ−1 have the scale and temperature dependence given above.
As observed by LRA, this may be integrated analytically to give an expression for the
density of states. This is plotted for a system at temperatureT = 300 K with Tc = 892 K,
T 3D

c = 263 K andεF = 1.2 eV in figure 4; the reason for this choice of parameters will be
discussed in the light of photoemission data in a later section.

The density of states shows clear evidence of a quasigap at all temperatures aboveT 3D
c

observable for a system such as(TaSe4)2I. Spectral weightis still present at the Fermi
energy (ω = 0) at room temperature, but is greatly reduced. Traces of the square-root
singularity which will dominate the mean-field solution are visible at the edges of the gap
for temperatures approachingT 3D

c . Sharp spikes and edges in the plot are a numerical
artifact only.

The LRA Green’s function (15) above can clearly be seen to reduce to a BCS-type
Green’s function:

GR(k, ω) = ω + ε(k)

ω2 − ε(k)2 − 〈ψ2〉 + iδ
(17)
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Figure 4. The LRA density of states as a function of energy and temperature for the conducting
phase.

with 〈92〉 taking on the role of a real gap in the limit whereξ → ∞; this mean-field
solution is in fact the exact zero-temperature limit of the LRA theory. At the level of
approximation relevant to the experiments the model may be taken to possess a real gap
belowT 3D

c . We shall then proceed to describe the system by an LRA Green’s function (15)
aboveT 3D

c (263 K for (TaSe4)2I), and by a BCS Green’s function belowT 3D
c .

It is also possible to integrate the spectral function numerically overω to obtain a result
for n(k). (The integration may be performed analytically for the BCS-like expression below
T 3D

c .) This is displayed in figure 5. The occupation number is clearly dominated by the
presence of the quasigap, varying over a scale ink-space given by1/h̄vF . No Fermi step
is present in the occupation number at an experimentally observable temperature, but the
region ofk-space over whichn(k) undergoes most change becomessmallerwith increasing
temperature and decreasing size of the quasigap. Both the occupation number and the
density of states illustrate the fact that the metallic (fluctuating CDW) phase of the model
does not resemble a conventional Fermi liquid.

Consideration of the denominator of the spectral function atkF shows that spectral
weight is concentrated in one peak provided that the quantity〈ψ2〉 − v2

F ξ−2/4 is negative.
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Figure 5. A plot of n(k), the occupation number, for temperatures above, below, and at (solid
line) the 3D ordering temperature.

This gap-like parameter will change sign at a temperature of similar magnitude to, but in
general different from, the mean-field temperatureTc. On cooling it becomes positive, and
spectral weight is split into two peaks. SinceTc is well above room temperature, the two-
peak structure is the only one expected in the experiments of the following section. The
breadth of the peaks is determined by the inverse coherence lengthξ−1. At kF the division
of spectral weight between peaks is even; fork-vectors deeper in the valence band more
weight is found in the lower peak. This may be compared directly with coherence factor
effects in the BCS-like phase of the model belowT 3D

c . The opening of the quasigap in the
density of states is visible then inA(k, ω) as a splitting of spectral weight into two broad
peaks, and the transition from metal to insulator marked by the progressive narrowing of
these peaks until they become delta functions separated by a real gap atT 3D

c . Tight bunching
of peaks near the edges of the gap lead to the pronounced rise in the density of states there;
this will again resolve into a square-root divergence belowT 3D

c .

4. Angle-resolved photoemission

Quasi-one-dimensional materials were chosen for angle-resolved photoemission experiments
on account of the interesting phase transitions which they undergo, and also because
the reduced dimensional nature of their Brillouin zones simplified the interpretation of
the spectra obtained. The existence of many exactly soluble models of one-dimensional
systems makes the exploration of quasi-one-dimensional materials equally appealing from
a theoretical point of view. The particular hope of finding evidence for the existence of
a Luttinger liquid has motivated a large number of photoemission studies of quasi-one-
dimensional conductors. Among these, the most detailed studies have been performed on
(TaSe4)2I, [10, 11, 22], and the discussion of the data on this compound is our object in
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this section.
While the authors of the papers on(TaSe2)4I often disagree on the detailed interpretation

of their data, the lack of spectral weight at the Fermi energy is a universally observed trend.
As this is one of the signal features of a Luttinger liquid, several researchers have concluded
that (TaSe4)2I and its sister compounds are Luttinger liquids in their conducting phase. The
nature of the loss of spectral weight may be best probed by angle-resolved photoemission,
since this offers some hope of establishing whither the missing weight has moved.

The quantity measured by an ideal angle-resolved photoemission experiment at zero
temperature is the ground-state electronic spectral function of the material being probed.
This is formally equivalent to the imaginary part of the system’s retarded Green’s function,
and so confers complete knowledge of its single-particle properties. Real photoemission
experiments suffer limitations of finite temperature and resolution, and can only probe
the properties of the surface layer of material from which the electron emerges. Spectra
also contain a substantial systematic background, which is not generally well understood,
and which must be subtracted according to some prescription before the data can be fully
analysed.

Recent angle-resolved studies of the conduction band in(TaSe2)4I) have been performed
above and below its CDW transition temperature, and the spectra possess a number of
interesting features. The one most stressed in the literature is the lack of spectral weight at
and near the Fermi energy. Related to this is the lack of a Fermi step in the background of
spectra takenabovethe transition temperature. These features represent a marked departure
from the usual character of metallic conduction, as observed in similar experiments on
three-dimensional systems. We shall see below that there are several other characteristics
of the experimental results that are similarly anomalous.

The simplest result (non-interacting electrons) for energy-distribution curves (EDCs) in
ARPES done for initial electron momentum near the Fermi energy would be a delta function.
Finite experimental resolution will of course broaden this peak. We have convoluted our
results with a Gaussian resolution function. The width is equal to the published estimated
resolution of 160 meV. One source of (not very interesting) background is that of secondary
electrons. The intensity of this rises steeply as the detected energy decreases, starting a few
eV below the Fermi energy. It was found that, for each spectrum, a Gaussian with width of
similar order to that of the band and centred at an energy below the band minimum could
be chosen to closely mimic this contribution, and this was duly subtracted. The overlap of
the Gaussian with the interesting structures near the Fermi energy is small, but due to its
width not quite negligible.

As a rule, however, the most striking difference between observed EDCs and the ideal
result is the existence of a structure resembling a Fermi edge in addition to the expected
peak. This should be attributed to the existence of quasi-elastic scattering of electrons on
exit from the sample, probably arising from disorder near the surface. It is important to
remember that electrons detected in ARPES originate from near the surface and few surfaces
are atomically flat. To take this into account, it is most reasonable to suppose that some
fraction of the electrons have their momenta randomized on exit.

The resulting spectrum is a linear combination of a true angle-resolved spectrum (the
spectral function), and an angle-integrated spectrum (the density of states). In theoretical
terms, this means a combination of the imaginary part of the one-particle Greeen’s function
and the imaginary part of its trace. This picture is confirmed by the observation that
ARPES EDCs and angle-integrated spectra taken on a single sample do differ only by the
peak structure in the former. The relative weight in the two components must be determined
by a fit.
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Figure 6. Single-parameter fits to ARPES spectra taken on(TaSe4)2I in the conducting phase,
for various wavevectors for which data were available.

The experiments on(TaSe4)2I fit this picture, with one exception. In contrast to
experiments on three-dimensional metals, the angle-integrated spectrum near the Fermi
energy does not resemble the expected Fermi function. Instead, the occupation falls off
smoothly in the neighbourhood of the chemical potential. Qualitatively, this may be the



10504 N Shannon and R Joynt

Figure 6. (Continued)

result of Luttinger-liquid behaviour. However, it may also result from the pseudogap in the
LRA theory. Only a quantitative comparison can distinguish these alternatives.

We show the comparison of experiment and theory in figure 6. Each plot is taken
at a fixed angle of outcoming electron, and the inferred wavevectors are as shown. The
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Figure 6. (Continued)

data are taken from reference [21]. The choice of wavevectors shown was dictated by the
availability of experimental data. The background, fitted by a Gaussian as mentioned above,
has already been subtracted from the experimental curves. The theoretical curves are plotted
from equation (16), broadened by convolution with the Gaussian resolution function. Two
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free parameters were retained for the fit: the mean-field transition temperature with a best-fit
value Tc = 892 K and the Fermi velocityvF = 6.5 × 105 m s−1, which is fixed by the

overall linear dispersion. The parameterkF = 0.27 Å
−1

is fixed by the fact that the band
is one quarter filled. This gives a zero-temperature gap10 = 0.52 eV by extrapolation
of the dispersion to low temperatures.Tc compares well with the expectation that, at a
temperature aroundTc/4, the actual transition should take place and the resistivity should
become activated. In(TaSe4)2I this occurs atT 3D

c = 263 K.
Each plot shows a peak broader than the experimental resolution of 160 meV. The fits

have been made with the stated resolution. It is evident that extremely good fits could be
made either by increasing the width of the convolving function by about 50 meV (30%), by
assuming some scattering of the electrons as they exit the material, or by assuming that the
material is impure to begin with, which would give a momentum-independent additional
width to the spectral function. Since all three of these alternatives involve the introduction
of an ad hoc parameter, we have preferred to leave the theoretical curves as shown and
merely note that it would be somewhat surprising if there was no source of broadening
beyond the instrumental resolution and that in equation (16).

Evaluating the comparisons in figure 6, we may say that the peak positions are given
very well. The worst case is figure 6(c), where the theoretical prediction is too low by
perhaps 30 meV, and the other discrepancies are smaller. The widths are too large by about
20% in all cases, suggesting some relatively minor additional systematic effect.

Figure 7. A momentum-integrated spectrum found from the LRA model in the conducting
phase, showing suppression of the density of states at the chemical potentialµ = 0.

The momentum-integrated spectrum in figure 7 is obtained by integrating equation (16)
overk. It may be compared with the results of angle-integrated experiments [10, 11], and is
clearly in good qualitative agreement with these, although the limited validity of our linear
approximation to the free-electron dispersion renders quantitative comparison away from
the Fermi energy impossible. Most significant is the movement of weight away from the
Fermi energy, the signature of the pseudogap caused by the charge fluctuations.
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5. Fermi liquid, Luttinger liquid, or LRA liquid?

Four features of the LRA theoryand the data are striking.

(1) The movement of the peak position as a function of momentum is very small near
kF . In fact, the dispersion relation, if it is defined as the peak position, apparently nears a
quadratic maximum atkF .

(2) The peaks are broad and symmetric. The widths are not very momentum dependent,
ranging only from about 400–600 meV in the range under study.

(3) There is a strong pseudogap at all momenta, with the weight of the spectral function
at the Fermi energy small. In addition, there is clear evidence of an energy scale associated
with the gap structure. This is best read off from the peak position in figure 7 as about 500
meV. This is related to the zero-temperature CDW gap in the LRA theory.

(4) There are what may be called ‘shadow bands’. These are electronic states, or rather
peaks in the spectral function, where no bands should be in a free-electron picture. In the
data, a clear peak is seen even at momenta|k| > kF . These peaks shadow the ordinary
band in the range|k| < kF —they are translates of the ordinary peaks through±2kF .

On all four points the data agree qualitatively, and even semiquantitatively, with the
LRA theory.

Let us first compare these findings with the expectations of Fermi-liquid theory. The
spectral function should approach

A(k, ω) ∼ δ(ω − vF (k − kF )) (18)

ask approacheskF . Further fromkF , we expect broadening due to interactions proportional
to ω2. Specifically:

(1)′ in a Fermi liquid, the peak should disperse linearly through the Fermi momentum;
(2)′ the peak should be symmetric, and the width should be resolution limited atkF and

broaden away fromkF ;
(3)′ there is no gap or pseudogap and the only energy scales areεF > 1 eV and

kBT ≈ 30 meV;
(4)′ there are no peaks whenk > kF .

It is clear, comparing points(1)′ to (4)′ to experiment(1) to (4), that this simple
Fermi-liquid behaviour is not at all consistent with the observations.

In the Luttinger liquid, we have a very different form for the spectral function at low
energies. In the spinless case [23], the delta function characteristic of the Fermi liquid is
replaced by a power-law singularity:

A(k, ω) ∼ 2(ω + ṽF |(k − kF )|)(−ω + ṽF (k − kF ))γ−1(−ω − ṽF (k − kF ))γ . (19)

In this formula, 2 denotes the step function:2(x) = 0 for x < 0, and2(x) = 1 for
x > 0. h̄ω is the energy measured relative to the chemical potential so thatω < 0 for
initial electron energies less than the chemical potential.γ is the coupling strength for the
electron–electron interaction. For short- (finite-) range interactions we expect 0< γ < 1,
(the infinite-U Hubbard model hasγ = 1

8 [24]). Here ṽF is the excitation velocity, which
includes contributions from the kinetic energy and the interaction. The integrated spectral
function (density of states) has the low-energy form∫

A(k, ω) dk ∼ |ω|2γ . (20)

In the case of electrons with spin, there are generally two singularities [25], one associated
with the charge excitations atω = ṽF,c(k − kF ) and one associated with the spin excitations
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at ω = ṽF,s(k − kF ). If the velocities of the two sorts of excitation are very similar, then at
finite resolution it may be difficult to distinguish this case from the spinless case. We may
now compare the Luttinger-liquid scenario to experiment.

(1)′′ In a Luttinger-liquid, forγ < 1 the singularity or singularities disperse linearly
through the Fermi energy. Forγ > 1, the dispersing structure becomes very diffuse near
the Fermi energy.

(2)′′ The widths that should be observed in a real experiment are not universal—they
depend on the details of the interaction [26]. One would expect some asymmetry in the
peaks, however.

(3)′′ There is a pseudogap-like feature in the density of states. However, the exponent
needed to fit experiment is larger than expected [26]. There is no obvious energy scale in
the theory for repulsive interactions, though a peak may be observed in the density of states
for [27] attractive interactions.

(4)′′ There can be peaks forω < 0 andk > kF . However, they would be expected to
be rather insignificant if 0< γ < 1.

Here it appears that(1)′′, and probably the asymmetry in(2)′′ and the exponent in(3)′′

are serious problems for the theory.
We conclude that the ARPES data on(TaSe4)2I are not consistent with either a Fermi-

liquid picture or a Luttinger-liquid picture.
The most decisive observation is the failure of the peaks in the EDCs to disperse through

the Fermi energy. The shapes and the widths of the peaks as a function of momentum are
also difficult to reconcile with these theories. The picture of very strong charge-density
fluctuations at 2kF appears, in contrast, to offer a consistent interpretation of all of the data.
We note, however, that the value of the CDW gap extracted from photoemission is larger
than that obtained from optical conductivity or resistivity measurements.

Efforts have been made in the last few years to obtain spectral predictions for the
Luther–Emery model [28]. This provides a more natural framework for consideration of
the materials in question, since CDW fluctuations are not expected to coexist with a Luttinger
liquid. There is not yet, however, a universally agreed prediction which may be compared
with experiment, and the lack of a simple energy scale in the model makes it difficult
to extract quantitative information from the real spectra. It has also been brought to our
attention since completion of this work, that a more complete and self-consistent treatment
of electron–phonon interaction has recently been developed by McKenzie [29]. A striking
feature of his theory is the asymmetry of the dispersing peaks in the spectral function, which
is almost redolent of the Luttinger liquid, although quite different in its physical origin. We
have not attempted to make a quantitative comparison of McKenzie’s spectral function with
the photoemission data for(TaSe4)2I, but note that there is no observable asymmetry in the
data.

It must be stressed that these conclusions apply to this particular system only;
experiments performed on other quasi-one-dimensional systems suggest that the relative
importance of electron–electron and electron–phonon interaction effects is strongly
dependent on the system in question. Even for(TaSe4)2I, correlation effects may be
masked by the strong charge fluctuations only within a particular parameter regime; it
is for example possible that the application of pressure to the chains would relatively
strengthen the interaction effects. In other materials, and particularly in some of the quasi-
one-dimensional SDW compounds, there would appear to be evidence for strongly one-
dimensional correlation effects.
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